RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2015

THIRD YEAR [BATCH 2013-16]

MATHEMATICS [Hons]

Date : 15/12/2015 Time : 11 am - 3 pm

Paper : V

Full Marks : 100

[Use a separate Answer Book for each Group]

Group - A

Answer any five questions

1.	a)	Let G be a group of order 8 and x be an element of G of order 4. Prove that $x^2 \in Z(G)$, the centre of G.	[4]
	b)	Justify the statement : "Any epimorphism of Z onto Z is an isomorphism"	[4] [3]
	c)	Prove that an Abelian group with two distinct elements of order 2 must have a subgroup of order 4.	[3]
-			
2.	a)	Find all homomorphisms from Z_6 into Z_4 .	[5]
	b)	Let G, G' be two cyclic groups of order 12 and 4 respectively. Prove that there exists a homomorphism ϕ of G onto G' with O (Ker ϕ) = 3.	[3]
	c)	Let G be an abelian group of order 6. Find Aut G .	[2]
3.	a)	Show that there are only two groups of order 6 upto isomorphism.	[4]
	b)	Show that D_4 can't be expressed as an internal direct product of two proper subgroups.	[3]
	c)	Is the group $\mathbb{Z} \times \mathbb{Z}$ cyclic? Justify your answer.	[3]
4.	a)	State and prove Sylow's 3 rd theorem on finite groups.	[6]
	b)	Let G be a nontrivial finite p-group. Prove that $Z(G)$, the centre of G is nontrivial.	[4]
5.	a)	Find the number of elements of order 3 in a nonabelian group of order 39.	[5]
	b)	Prove that a group of order 36 is not simple.	[5]
6.	a)	Assuming the result— ' $R[x]$ is a commutative ring with identity; when R is a commutative ring with identity' prove that $R[x]$ is an integral domain if R is an integral domain. Also prove that R	
			[3+1]
	b)	Find all maximal ideals of $\frac{\mathbb{R}[X]}{(X^4-1)}$.	[3]
	c)	State and prove 3 rd isomorphism theorem for rings.	[3]
7.	a)	Prove that order of a finite field is p^n for some prime p and $n \ge 1$.	[3]
	b)	Let F be a field and $\alpha: F \to F$ be a ring homomorphism. Prove that α is $1 - 1$. Is α always an isomorphism?	[3]
	c)	In a commutative ring with identity, prove that every proper ideal can be extended to a maximal	
		ideal.	[4]
8.	a)	Prove that in a principal ideal domain every nonzero prime ideal is maximal.	[3]
	b)	Prove that in a unique factorization domain an irreducible element is prime.	[3]
	c)	In $\mathbb{Z}[i\sqrt{5}]$, show that the element 3 is irreducible but not prime.	[4]

Group - B

Answer <u>any six</u> questions :

a) Let $f: (\mathbb{R}^2 - \{(1,1)\}) \to \mathbb{R}$ be defined by $f(x, y) = \frac{(x-y)^2}{1-2xy+y^2}$ 9.

> Prove that $\liminf_{x \to 1} \inf_{y \to 1} f(x, y)$ & $\liminf_{y \to 1} \inf_{x \to 1} f(x, y)$ exist. Does $\lim_{(x,y) \to (1,1)} f(x, y)$ exist? Justify your answer. [3]

> > [2]

[5]

b) Let
$$f(x, y) = \begin{cases} (ax + by) \sin \frac{x}{y}, y \neq 0\\ 0, y = 0 \& \text{ for all } x \end{cases}$$

a, b are two real constants. Show that f is continuous at (0,0).

10. The equation $f\left(\frac{x}{y}, \frac{z}{y}\right) = 0$ defines z implicitly as function of x and y, say z = g(x,y). Assume that g_x ,

gy are continuous. Let the partial derivative of f with respect to second component be non-zero. Show that g(x,y) is homogeneous function of degree 1. [5]

11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^2 \sin \frac{1}{x} + y^2 \sin \frac{1}{y}$ if $xy \neq 0$ $= x^{2} \sin \frac{1}{x}$ if $x \neq 0, y = 0$ $= y^2 \sin \frac{1}{y}$ if $x = 0, y \neq 0$ = 0 if (x,y) = (0,0)~ ~ 20

Prove that
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$
 are discontinuous at (0,0) but f(x,y) is differentiable at (0,0) [5]

12. Let $f: S \to R$ where S is open subset of \mathbb{R}^2 . Let $(a,b) \in S$. Let (i) f_x , f_y be defined in some neighbourhood of (a,b) (ii) f_{xy} be continuous at (a,b).

Prove that $f_{yx}(a,b)$ exists and $f_{xy}(a,b) = f_{yx}(a,b)$.

- 13. Transform the equation $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ taking u = x+y, $v = \frac{y}{x}$ & $w = \frac{z}{x}$ for the new function w = w(u, v) & z is a twice differentiable function of x & y. [5]
- 14. Let f(x,y) have continuous first order partial derivatives and let the directional derivative $\frac{\partial f}{\partial \xi}$ exist.

Prove that
$$\frac{\partial \mathbf{f}}{\partial \xi_{\alpha}} = \cos \alpha \cdot \mathbf{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) + \sin \alpha \cdot \mathbf{f}_{\mathbf{y}}(\mathbf{x}, \mathbf{y})$$
.

g

where α is the angle with positive side of x axis measured in anticlockwise direction. [5]

15. Show that if $ax^2 + by^2 + cz^2 + 2hxy + 2fyz + 2gzx$ can be resolved into linear factors in x, y and z, then a h g

h b f = 0. [5] f

16. Use Taylor's theorem to show that $\lim_{(x,y)\to(0,0)} \frac{\sin xy + xe^x - y}{x\cos y + \sin 2y} = -2$ when (x,y) approach (0,0) along y = -x. [5] If xyz = abc, a > 0, b > 0, c > 0; using Lagrange's method, evaluate the extreme value of bcx + cay + abz.

Answer any four questions :

18. Let f:[a,b]→ R be integrable on [a,b]. If there exists a positive real number K such that f(x) ≥ K for all x ∈ [a,b] then show that 1/f is also integrable on [a,b]. [5]

[5]

[1]

[2]

[3]

- 19. Let a function $f : [a,b] \to \mathbb{R}$ be integrable on $[a,b] \& f(x) \ge 0$ for all $x \in [a,b]$. Let there exist a point c in [a,b] such that f is continuous at c and f(c) > 0, then show that $\int_{a}^{b} f > 0$. [5]
- 20. a) State fundamental theorem of integral calculus.

b) Prove that
$$\frac{1}{2} < \int_{0}^{1} \frac{dx}{\sqrt{4 - x^2 + x^3}} < \frac{\pi}{6}$$
. [4]

21. a) Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be both integrable on [a,b]. If g(x) has the same sign for all $x \in [a,b]$ then show that there is a number μ such that $\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx$ where

$$\inf_{x \in [a,b]} f(x) \le \mu \le \sup_{x \in [a,b]} f(x).$$
[3]

b) Prove that
$$\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| < \frac{4}{a}$$
 where $0 < a < b < \infty$. [2]

22. a) Define a set of measure zero. [1]

- b) Show that the following conclusions are false :i) If f is Riemann integrable over [a,b] it has a primitive in [a,b] [2]
 - ii) If f has a primitive in [a,b] then f is integrable over [a,b] [2]
- 23. a) Define function of bounded variation.
 - b) Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$f(x) = x^{2} \sin \frac{\pi}{x^{2}}, x \neq 0$$
$$= 0, \qquad x = 0$$

is not a function of bounded variation on [0,1].

_____ X _____